Facultative cheating supports the coexistence of diverse quorum-sensing alleles.
نویسندگان
چکیده
Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is unclear what selection forces drive the maintenance of pherotype diversity. Here, we use the ComQXPA system of Bacillus subtilis as a model system, to show that pherotype diversity can be maintained by facultative cheating--a minority pherotype exploits the majority, but resumes cooperation when its frequency increases. We find that the maintenance of multiple pherotypes by facultative cheating can persist under kin-selection conditions that select against "obligate cheaters" quorum-sensing response null mutants. Our results therefore support a role for facultative cheating and kin selection in the evolution of quorum-sensing diversity.
منابع مشابه
Social conflict drives the evolutionary divergence of quorum sensing.
In microbial "quorum sensing" (QS) communication systems, microbes produce and respond to a signaling molecule, enabling a cooperative response at high cell densities. Many species of bacteria show fast, intraspecific, evolutionary divergence of their QS pathway specificity--signaling molecules activate cognate receptors in the same strain but fail to activate, and sometimes inhibit, those of o...
متن کاملSocial Evolution Selects for Redundancy in Bacterial Quorum Sensing
Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The p...
متن کاملSelection favors incompatible signaling in bacteria.
A cooperative group can achieve more than the sum of its members. Evolution has taken advantage of this principle in most natural systems, from multicellular individuals to ant colonies. To do so, it has provided the members of cooperative groups with communication tools, which are critical for effective cooperation. For example, some ants form bridges with their bodies to help their nest-mates...
متن کاملLow concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds
Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...
متن کاملA spatial model of the evolution of quorum sensing regulating bacteriocin production
Like any form of cooperative behavior, quorum sensing (QS) in bacteria is potentially vulnerable to cheating, the occurrence of individuals that contribute less but still profit from the benefits provided by others. In this paper, we explore the evolutionary stability of QS as a regulatory mechanism of antibiotics production in a spatially structured population, using cellular automaton (CA) mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 8 شماره
صفحات -
تاریخ انتشار 2016